
ORIGINAC PAX YS
OF POOR QUAL$TJLI

Mapping a Battlefield Simulation onto
Message-Passing Parallel Architectures*

David M. Nicol t
The College of William and Mary

Abstract

Perhaps the most critical problem in distributed simulation is that of mapping:
without an effective mapping of workload to processors the speedup potential of paral-
lel processing cannot be realized. Mapping a simulation onto a message-passing archi-
tecture is especially difficult when the computational workload dynamically changes
as a function of time and space; this is exactly the situation faced by battlefield sini-
ulations. This paper studies an approach where the simulated battlefield domain is
first partitioned into many regions of equal size, typically there are more regions than
processors. The regions are then assigned to processors; a processor is responsible for
performing all simulation activity associated with its regions. The assignment algo-
rithm is quite simple, and attempts to balance load by exploiting locality of workload
intensity. The performance of this technique is studied on a simple battlefield simu-
lation implemented on the Flex/32 multiprocessor. Our measurements show that the
proposed method achieves reasonable processor efficiencies. Furthermore, the method
shows promise for use in dynamic remapping of the simulation.

7 o c tpp(m in the l’rocectlings of the 1988 SCS Confcrence on Distributed Simulation, San Diego
1 his rescarch was slzpported in part by the National Aeronautics and Space Administration under NASA

(c, ract NAS1-18107 while the author was i n residence at ICASE, Mail Stop 132C, NASA Langley Research
C clt ier7 !Iniiipton, VA 23665.

1 Introduction
Perhaps the most critical performance issue in distributed simulation is that of mapping:
without effective mapping policies the speedup potential of parallel processing cannot be
realized. Mapping a parallel simulation onto a message-passing architecture is especially
difficult when the computational workload dynamically changes as a function of time and
space; this is exactly the situation faced by battlefield simulations such as CORBAN [3].
CORBAN focuses on units that model military units such as companies, regiments, and
battalions. The units move through a two dimensional domain tessellated by hexagons,
and engage in combat with "close" units from the opposing side. Figure 1 illustrates a

/

Figure 1: Battlefield Simulation Board

srriall region of such a domain. Studies have shown that the perception of nearby units,
and combat with opposing units are the most computationally intensive aspect of the
simulation[3] .

Both Zipscreen and CORBAN are time-driven, rather than discrete-event simulations.
There are strong reasons to suspect that using a discrete-event paradigm for distributed
I Y ~ t ;,lcfield simulations will severely limit possible performance gains achievable by par-
allelism. The problem of avoiding deadlock in distributed discrete-event simulations has
i m n well studied [1,15,13]. A formal treatment in [12] has proven that to avoid deadlock
without rolling back simulation clocks, it is necessary for certain logical processes to be
qble to predict their future message-passing behavior far enough into the future to allow

1

some other logical process to advance its clock (deadlock avoidance protocols that rely on
prediction demonstrate only the suficiency of behavior prediction). The ability to predict
future behavior is very limited in battlefield simulations due to context sensitive decision
making; this limited ability implies that the synchronization constraints and overhead of
avoiding deadlock are likely to adversely affect performance. The Time Warp (51 mecha-
nism of rolling back clocks avoids the behavior prediction problem, but does so at the cost
of extensive memory requirements, and the potential threat of having rollback “thrashing”.
Time-stepped simulations seem to offer the best potential for battlefield simulations, since
all computational activity for a time-step can be performed concurrently. However, it is
important that the time-step be large enough to allow a significant amount of computation.

Because of the relatively high cost of message passing on many parallel architectures,
it is not efficient to employ the type of fully dynamic workload assignment (e.g. idle pro-
cessors access a central work queue) so effective on shared memory machines. Instead, the
workload assignment needs to be semi-static, changing only infrequently. An apparently
natural static workload assignment is to simply assign each processor an equal number of
units, an approach discussed by Gilmer and Hong in [4]. Since one unit can conceivably
interact with any other unit from an opposing side, this approach requires that every pro-
cessor communicate (directly or indirectly) with every other processor, if only to say that
it has nothing to communicate. In addition to the high communication needs, Gilmer and
Hong noted that the approach suffered from load imbalance. This problem arises because
serious computation occurs only when units are geographically close, so that at any given
time-step a unit may or may not demand substantial computation.

A simple mathematical model illustrates that simply distributing the units evenly
among processors can lead to serious load imbalance. Suppose that each of N proces-
sors is given rn units, and each unit independently has a probability p of fighting. Call
the number of fighting units in the processor its load. Every processor must complete
time-step n before any processor can begin time step n + 1; consequently the time to exe-
cute a time-step is the time required by the most heavily loaded processor to execute that
step. The processing time of any processor is a random variable; these random variables
are independent and identically distributed (with the binomial distribution) with mean
,u = p ni and standard deviantion Q = d-. We are interested in E [M] , the
expected value of the largest of these variables. An approximation in [6] for this quantity
is

E [M] = p + o d a .
E [M] can be used to compute ef ic iency: (expected) speedup divided by the number of
processors: e = (N r n p / E [M]) / N . Table 1 tabulates e as a function of p and N when there
are 1000 units total, evenly distributed among processors.

We see that performance is poor if the probability of a unit fighting is very low, partic-
ularly so if the number of processors is high. Table 1 estimates only the inefficiencies due
to load imbalance: the additional overhead due to communication and synchronization will

I

2

.

0.84
0.76
0.64
0.55
0.35

e N p c N
16 0.5 0.77 256
16 0.25 0.66 256
16 0.1 0.53 256
16 0.05 0.43 256
16 0.01 0.25 256

P
0.5
0.25
0.1
0.05
0.01

E 0.12

Table 1: Expected Efficiency
,

further degrade performance. It is clear from this model that load imbalance is potentially

This paper studies ail approach where one assigns pieces of the domain to processors,
rather than directly assigning units. A processor is responsible for simulating units on its
assigned subset of the domain. The simulated battlefield domain is first partitioned into
many regions of equal size, typically there are more regions than processors. The regions
are then assigned to processors so that an (approximately) equal number of regions are
assigned to each processor. The communication requirements of this approach are very
local-the vast bulk of communication is between processors holding adjacent regions. At
first glance, this technique appears to have virtually the same load balancing philosophy as
the previous mapping scheme. However, there is an important difference. The partitioning
and assignment of the domain exploits the fact that if there is battle activity in a hex, then
there is likely to be battle activity in an adjacent hex. Some degree of load balancing can
be achieved simply by assigning adjacent hexes to different processors. This balance comes
at the price of increased overhead; some control over the trade-off between load imbalance
and overhead is given by parameterizing the partitioning to allow small contiguous groups
of lieses to remain on a processor, and assign adjacent groups to different processors. This
paper studies the performance of our proposed technique on the Zipscreen simulation,
wliicli was modeled after the CORBAN simulation [4].

a wry scrious problcin for t1istril)tited bat tlcfic+l siniul* c l t’ 1011s.

2 Zipscreen Simulation
Zipscreen [2,4] (developed by tlie BDM Corporation) is a much simplified version of the
CORBAN [3] simulation, developed for the purposes of studying performance issues in
mapping battlefield simulations to parallel architectures. Zipscreen focuses on the per -
c c p f i o n , combat, and mo~ucment activities found in CORBAN. During a time-step every
Zipscreen unit creates a list of all enemy units on its own hex, and on adjacent hexes. A
unit enters combat with units found on this list, calculates losses that it inflicts on enemy
iinits, and reports those losscs to the processors owning the afflicted units. At the end of

3

a time-step, every unit moves, possibly changing hex locations.
Tlic BDM Corporation uiidcr contract with DARPA is actively studying issues in the

parallel esccution of battlefield simulations. In its study of message-passing machines (the
Intel iPSC in particular) BDM focused on the perception, combat, and movement activities
because of the challenges they present to parallel computing. The efficiency of perception
is very much affected by the simulation’s distribution across multiple processors, and the
cost of inter-processor communication. Combat is computationally intensive, and so has
an important influence on load balancing. Inter-unit (and hence potential inter-processor)
communication of losses is affected by communication costs as well. The efficiency of
movement depends on the cost of communication; the fact that units dynamically move
has a profound impact on load balancing and load balancing strategies. Because of these
factors, Zipscreen appears to be a good testbed for studying battlefield simulation load
bdn ncing issues.

3 Domain Partitioning and Assignment
A two-dimensional domain tessellated by hexagons can be viewed as a “rectangular” array
of hexagons. This is seen in figure 2 where the “rows” are clearly defined while the hexes in
a “column” zig-zag vertically. For the purposes of partitioning, we assume that the domain

Figure 2: Rectangular Partitioning of Domain

c

4

ORIGINAL PAGE IS
OF POOR QU-

O

.

consists of a rectangular array of hexes, where each hex can be uniquely identified by its
row and column indices. Partitioning consists of covering the domain with rectangles
each w hexes wide and h hexes tall (with the possibility of some deviation from these
dimensions at the edges of the domain). These rectangles themselves form a rectangular
array that we index by “rectangle row” and ‘‘rc:ctmgle column”. We cover the domain
by assigning hex (i,j) to rectangle (z mod h , j mod w). In a similar fashion, we view the
N processors as forming a 1‘ by c rectangular array of processors. Then, rectangle (k, m)
and all the hexes it contains are assigned to processor (IC mod r, rn mod c) . This scheme is
called wrapping, and has been studied on a variety of problems [11,18,7]. Figure 2 shows a
wrapped assignment of blocks with w = 2 and h = 3 to the four processors Po, PI, Pz, P3.
Wrapping exploits the observation that for many problems arising from physical domains,
workload tends to be positively correlated in space. In a battlefield simulation this is true
for two reasons. The first follows from the rule requiring engaged units to lie on the same
or adjacent hexes. If there is engagement activity on a hex, there is a significant chance
that the opposing units lie on different hexes, so that simulated combat occurs on at least
two adjacent hexes. Simulated combat activity is thus seen to be positively correlated, at
least very locally. The second reason follows from the observation that battles (and hence
battlefield simulations) tend to be localized in space. The knowledge that a particular
hex contains an engaged unit makes it likely that the hex lies in a region where the main
battle-lincs are drawn.

The values w and h allow a parameterized partitioning of the domain. Smaller values
create a finer granularity of workload, and tend to yield better a balance of load. But be-
cause of the communication requirements of maintaining up-to-date unit state information,
finer workload granularity requires more communication overhead. By using a parameter-
izccl approach to partitioning, we can control the trade-off between load imbalance and
overhead, and find the best granularity for the problem and architecture. The principles
underlying this tradeoff are discussed further in [ll].

4 Implementation

T h e orgaiiizntion of the simulation has an important effect on the simulation’s perfor-
riia~ice. This section briefly describes the data structures we used in our implementation
of Zipscrecn.

BDM made a version of their iPSC source code, written in C, available for use in
ow load balancing studies. This code is documented in [2]. In adapting their code,
wc rctaincd the ~~17~it-sc07~boa7d structure, which describes a combat unit, its identity
:i ,ii!ilwr, location, direction of iiiovement, speed, side, and number of combat assets. We
illso retained the asset- i tem structure, which describes the type and strength of a unit’s
combat asset. vSTe deviate from the original Zipscreen organization in our treatment of
lieses. We define a hex-struct stxucture to represent a hex, including such information

5

a s the idcntities and processor assignments of adjacent hexes. A hexstruct also contains
a pointer to a linked list of unitscorkboard structures representing units resident on the
hex. A hexstruct is maintained only for active hexes, those with units occupying them:
consequently hexstructs are created and deleted throughout a simulation run as units
move through the domain. A processor’s active hexstructs are organized in a hashtable,
with a hex’s (one-dimensional) identity number as the hashing key. Naturally, a processor
maintains hexstructs for hcxcs within the processor’s assigned regions. In addition, it
maintains hexstructs for active hexes which are adjacent to one of the processor’s regions,
but are assigned to another processor. These boundary hexstructs aid in the perception
and combat phases of a time-step. The owner of a boundary hex is responsible for sending
enough information to keep the description of units on it up to date.

A unit’s unitscoreboard structure can be found in two ways. If the unit’s hex location
is known, then the hexstruct for that location is quickly found, and the list of units on
the hex is scanned. Alternatively, the unitscoreboard structures are also linked together,
allowing an efficient linear scan of the processor’s units. The unitstructures list is useful
for loops that perform some action (e.g. perception, combat, movement) for every one of a
processor’s units. The hashtable method is convenient during the perception phase- for a
given unit at a known location, we desire a list of all enemy units on the same or adjacent
hexes. Units on adjacent hexcs are quickly identified since the hexstructs for adjacent
hexes are quickly identified.

A time-step in our Zipscreen iniplementation can be viewed as having a computation
phase, followed by a communication phase. Because a processor maintains up-to-date
information about active hexes bordering its own regions, it is able to conduct the percep-
tion and combat phases without communicating with any other processor. Combat losses
which are inflicted on a non-resident unit are simply accumulated by that unit during the
computation phase. Once a processor has finished combat it enters the communication
phase. First, it sends damage reports to each of its neighboring processors, describing the
damage it inflicted on units owned by that processor. Upon receiving a damage report, a
processor updates the affected units, and propagates the damage report to all of its (other)
neighbors who maintain a version of the afflicted unit. A processor receiving a propagated
damage report simply updates its copy of the afflicted unit. Once all damage reports
have been exchanged, each processor computes the new position of all units for which it
has a copy. This duplication of computational cffoxt is less expensive than is communi-
cating new positions; this is largely due to the computational simplicity of the Zipscreen
movement mechanism. Combat simulations with more realistic (and computationally ex-
pensive) movement mechanisms may not find this duplication advantageous. If a unit
leaves a hex, the owning processor notifies the new owner (possibly itself); a processor just
discards a non-resident unit when that unit changes hex positions. A processor receiving
a moved unit notifies all processors adjacent to that unit’s hex. A unit leaving the board
simply disappears. The time-step is finished when all processors have completed the unit
movement activity.

6

Thc organization of our version of Zipscreen is similar in philosophy to the state space
replication method studied by Gilmer and Hong [4]. However, there are important differ-
ences between the two methods. The state space replication method requires that every
processor maintain in memory an up-to-date version of the entire simulation state space.
Clearly, it is quite expensive to maintain the entire state space in every processor, as
this requires global dissemination of new data at the end of each time-step. Our method
requires that a processor duplicate some of the domain (units on hexes adjacent to its
own), but only that portion of the domain which is likely to affect the units implicitly
assigned to the processor; the technique of sharing only boundary information is standard
practice in the parallel solution of partial differential equations using relaxation methods.
Sharing only boundary information limits the amount of communication necessary: using
our scheme a processor need communicate with no more than six other processors (al-
though this figure could rise if more complicated movement and rules of engagement were
allowed). Our method achieves substantial savings in communication costs over the state
space replication method, and should suffer less from load imbalance.

Our version of Zipscreen currently runs on the Flex/32 Multi-computer at the NASA
Langley Research Center. The Flex has twenty processors, two of which serve as hosts; the
remaining eighteen are used for parallel processing. Each processor is NSC32032 based,
and has approximately 1M bytes of local memory. There is a global memory with approxi-
mately 2.25M bytes. Zipscreen uses the global memory only to implement message passing
between processors. Since the bulk of inter-processor communication costs are related to
costs of message handling and not to actual transmission, the Flex/32 implementation
should fairly well represent performance achieved by message-passing architectures with
fast communication channels but not necessarily fast access protocols. For the purposes
of measuring the additional cost of using a message-passing paradigm, a shared-memory
version of Zipscreen has also been written and is being implemented on the Flex. In
addition, Zipscreen is currently being ported to the Intel iPSC. We intend to use these
additional codes to study the impact that architecture (or architectural paradigm) has on
performance.

Fs Empirical Studies
We ran our code on a variety of battlefield configurations, using a variety of partitionings.
The experiments were not intended to closely model realistic battlefield situations; rather,
they were constructed to exercise the simulation in those parameters we anticipate will
be most influential on realistic simulations. Every run simulates a battle between two
sides, each having five hundred units; every run advances fifty time-steps. The two sides
are initially separated by an imaginary line that runs through both the top and bottom
hex rows. All of a side’s units are placed randomly in a corridor a few hexes wide that
rims the length of the line. The units are given random speeds and random directions,

7

~ ~ ~ ~~

Parameter Values
Board Size
Average Unit Speed
Bat tleline Orientation Verticle, Diagonal

32 x 32, 64 x 64
0.06 hexes/step (slow) , 0.175 hexes/step (fas t)

Table 2: Problem Parameters

with the provision that the direction chosen eventually intersects the separating line (thus
ensuring that two sides do approach each other). Our runs varied the board size, the
average unit speed, and the angle of the separating line. Table 2 summarizes the values
those parameters assumed.

For every boardsize, we tested all possible square power-of-two square partitions, and
all possible horizontal strips having a power-of-two number of rows. We used eight and
sixteen processors. For each run we measured the elapsed running time (excluding the time
required to download the parallel machine). We also measured the serial running time of
each configuration, allowing the calculation of a run’s efficiency. Tables 3 and 4 tabulate
these measurements. Size refers to the size of the aggregated domain block, Procs to the
number of processors used; the running time is given in minutes.

Several important trends are discernible from this data. First of all, this mapping
method clearly works-within the allowed family of mappings there are partition sizes
which yield reasonably good efficiencies. However, some care needs to be taken to avoid
the bad mappings. A second trend is that strip partitions perform better than square
partitions. The primary reason for this is lower communication and synchronization costs.
Using square partitions a processor must communicate and synchronize with six others;
using strips a processor communicates with only two others. If the startup costs of a mes-
sage are high, then reducing the total number of messages can lead to better performance,
even if the volume of message traffic is higher. This phenomenon has also been noted in
parallel numerical codes [16]. Note however that the good performance for strips heavily
depends on proper strip orientation; it also depends on the battleline extending the full
height of the board. If the battleline orientation can not be predicted, or if the battle
bunches up in one corner, then square partitions will be more effective than strips. A third
important trend is that the 32 x 32 board running times are significantly larger than the
64 x 64 board running times, and the 32 x 32 board efficiencies are significantly higher than
the 64 x 64 board efficiencies. The higher running times are due to the fact that there are
more interactions between units on the smaller board; the higher efficiencies follow because
the average processor communication costs varies very little between the two board sizes
(a fact given by additional measurements not shown here). It has been noted time and
time again in parallel processing research that the ratio of communication to computation
is a strong factor in determining performance. All of the variations in performance shown

8

32 x 32 Board, Fast, Vertical
Size Procs Minutes Eficiency

1 x 1
2 x 2
4 x 4
8 x S
1 x 32
2 x 32
1 x 32
2 x 32
4 x 32

4.121 0.15
2.63 0.24
2.43 0.26
2.76 0.23
1.46 0.44
1.42 0.45
2.69 0.48
2.12 0.61
2.30 0.56

32 x 32 Board, Slow, Vertical
Size Procs Minutes Eficiency

1 x 1 16 4.s5 0.20
2 x 2 ” 3.59 0.2s
4 x 4)’ 3.66 0.27
s x s ” 3.92 0.25
1 x 32 ,’ 1.87 0.52
2 x 32 ” 1.87 0.52
1 x 3 2 s 3.40 0.5s
2 x 32 ” 2.ss O.GS
4 x 32 ’) 3.07 0.64

32 x 32 Board, Fast, Diagonal

1 x 1 16 3.79 0.15
2 x 2 ’, 1.79 0.31
4 x 4 ’, 1.71 0.32
8 x 8 ” 2.06 0.27
1 x 32 ” 1.31 0.42
2 x 32 ” 1.27 0.44
1 x 3 2 8 2.44 0.45
2 x 32 ” 1.82 0.61
4 x 32 ” 1.99 0.56

Size Procs Minutes Eficiency

32 x 32 Board, Slow, Diagonal
Size Procs Minutes EfFiciency

1 x 1 16
2 x 2 ’,
4 x 4 ’,
8 x 8 ”

1 x 32 ’,
2 x 32 77

1 x 3 2 8
2 x 32 ’,
4 x 32 ,’

4.09
1.95
2.22
2.44
1.51
1.47
2.76
2.22
2.36

0.18
0.39
0.34
0.31
0.50
0.51
0.55
0.68
0.64

Table 3: Measurements from 32 x 32 Board

9

64 x 64 Board, Fast, Vertical
Size Procs Minutes Eficiency

1 x 1 16 3.34 0.12
2 x 2 1.45 0.28
4 x 4 1.28 0.31
8 x 8 1.27 0.32

16 x 16 ” 1.40 0.29
1 x 64 ” 1.10 0.36
2 x G4 ” 0.77 0.52
4 x G4 ” 0 . i9 0.51
1 x 6 4 8 1.90 0.42
2 x 64 ” 1.43 0.56
4 x 64 ” 1.18 0.67
8 x 64 ” 1.30 0.62

7)

?7

77

64 x 64 Board, Slow, Vertical
Size Procs Minutes Eficiency

1 x 1 16 3.44 0.12
2 x 2 1.43 0.28
4 x 4 1.41 0.28
8 x 8 1.40 0.29

16 x 16 ” 1.45 0.28
1 x 64 ” 1 .06 0.37
2 x 64 ” 1.43 0.28
4 x’ 64 ” 1.41 0.28

77

77

77

64 x 64 Board, Fast, Diagonal
Size P ~ o c s hfznutes Eficiency

1 x 1 1G 2.63 0.12
2 x 2
4 x 4
8 x 8

16 x 16 ”

1 x 64 ”

2 x 64 ”

4 x 64 ”

1 x 6 4 8
2 x 64 ”

4 x 64 ”

8 x 64 ”

77

97

>I

1.17
0.80
0.87
1.05
0.82
0.60
0.57
1.58
1.08
0.93
0.95

0.27
0.39
0.36
0.30
0.38
0.52
0.53
0.39
0.58
0.67
0.66

I 64 x 64 Board, Slow, Diagonal
Size Procs Minutes Eficiency

1 x 1 16 2.51 0.07
2 x 2 1.08 0.17
4 x 4 0.81 0.23
8 x 4 0.87 0.21

16 x 16 ” 0.97 0.19
1 x 64 ” 0.75 0.25
2 x 64 ” 0.65 0.29
4 x 64 ” 0.59 0.32

7)

77

97

4 x 64 1.29 0.62 4 x 64 1.05 0.36
8 x 64 1.35 0.59 8 x 64 ” 0.97 0.39

Table 4: Measurements from 64 x 64 Board

10

ORIGINAL PAGE IS
L 04 E0Q.R QUALITX

Seconds

4

3

2

1

10 20 30 40

time-step

(a) Execution Time

0.8

0.6

0.4

0.2

30 40 10 20

time-step

(b) Processor Utilization

Figure 3: Execution Time and Processor Efficiencies During Perception and Combat

in our data can be explained in those terms. Finding the best mapping for the problem
amounts to finding the largest communication to computation ratio.

The organization of our Zipscreen code allows us to measure the time spent in percep-
tion and combat, during which time no communication occurs. Consequently, we are able
to measure the processor efficiency due solely to load balancing, and compare it in a loose
way t80 tlie efficiencies given in table 1. For one example run (using a 32 x 32 board, a 2 x 2
partition, a diagonal separating line, sixteen processors, and fast unit speeds), figure 3(a)
plots the longest time any processor spends in perception and combat as a function of time-
strp; 3(b) plots processor efficiency as a function of time-step for that same run. Despite
t l l c b fact that the fraction of combating units falls off dramatically to less than 5% by the
cmd of tlie run, the processor efficiencies are almost always better than 50%, they are often
1)cttt-r than 60%. This compares favorably with the “random scatter” efficiencies predicted
in t;~blc 1. Tliis is very clear evidence that the load balancing method is working. As noted
lxfore, our rnetliod has the additional advantage of limiting a processor’s communication
t o a few logical neighbors. On hypercube architectures such as the Intel iPSC [14], it is
poqbil,le to assign logical processors to physical processors so that any message between
two logical neighbors crosses no more than two communication links.

Large Ijlocks rctiuce the the amount of communication at the risk of load imbalance,
ant1 sniall blocks halance load at, the price of increased communication volume. The very

11

seconds

6

4

2

10 20 30 40
time-stcp

2 x 2 Block
a x a Block

Figure 4 Runiiirig Times for Two Different Partitions

I **

dynamic nature of simulations can create the situation where in some periods there is
intense computational activity, while in others there is relatively little. It can be advan-
tageous to use large blocks during low activity periods to minimize communication, and
to use small blocks during high activity periods to better balance the load. This is the
case using “slow” units-there is an initial period of low computational activity as the two
sides approach. The computational workload increases dramatically when the two sides
are throughly mixed, and tails off as they pass through each other. Figure 4 illustrates two
superimposed plots of the execution time versus time-step. One line plots the performance
of a 2 x 2 partition on a 32 x 32 board, the other plots the performance of a 8 x 8 partition.
We see an obvious potential for dynamically remapping the simulation in order to find the
bcst partition-to-problem fit at every time-step. Dynamic remapping is essential if we use
strip partitions, and then thc battleline moves to a configuration which defeats the strip
orientation. Of course, dynamically remapping the simulation exacts a delay which must
be considered. Some solutions to the dynamic remapping problem are given in [9,17,8,10];
we intend to study these techniques on the battlefield simulation problem.

12 ORIGINAL PAGE IS
OE EOOR QUALITX

6 Summary
. f

Early inquiries into the suitability of message-passing architectures for distributed bat-
tlefield siniulation have shown that load-balancing is a serious problem. Load imbalance
arises froni the fact that the behavior of the simulation workload is unpredictable, and
message-passing architectures seem to require semi-static mappings of workload to pro-
cessors. As the workload changes, any initial balance deteriorates, and performance is
dominated by the most heavily loaded processor. We are studying an approach which
attempts statistically to balance load. Under our approach we can chose an appropri-
ate degree of granularity, which in turn controls trade-off between good (probable) load
balance, and communication overhead. We have implemented the Zipscreen simulation,
have shown empirically that our approach is viable, and have demonstrated the trade-off
between load balance and communication inherent in our approach. Future work will in-
vestigate related mapping strategies, including dynamic remapping, and will consider the
implications of using our approach on more realistic simulations such as CORBAN.

Acknowledgements: Thanks are due to John Gilmer who provided us with his Zipscreen
source code, and to Frank Willard who did most of the early coding. This project has
benefited greatly from discussions with Joel Saltz and Paul Reynolds.

13

~ References
[l] CIIAKDY, I<. M., AND MISRA, J. Distributed simulation: a case study in design

and verification of distributed programs. I E E E Trans. on Software Engineering 5, 5
(September 1979), 440-452.

[2] GILMER, J. Documentation, State-Space Reconciliation Version of the Zipscreen Pro-
t o t y p e Simulation. Tech. Rep., BDM Corporation, 1986.

[3] GILMER, J. Statistical Measurements of the C O R B A N Simulation to Support Parallel
Processing. Tech. Rep. BDM/ROS-86-0326, BDM Corporation, 1986.

[4] GILMER, J .) AND HONG, J . Replicated state-space approach for parallel simulation.
In Proceedings of the 1986 Winter Simulation Conference (Washington, D.C., 1986).

A C M Trans. on Programming Languages and [5] JEFFERSON, D. R. Virtual time.
Systems 7, 3 (1985), 404-425.

[6] ICRUSCAL, C. P., AND WEISS, A. Allocating independent subtasks on parallel pro-
cessors. I E E E Trans. on Soft. Eng. SE-11, 10 (October 1985), 1001-1015.

[7] MORRISON, R., AND OTTO, S. The Scattered Decomposition for Finite Elements.
Tech. Rep. 286, Caltech Concurrent Computing Project, May 1985.

[SI NICOL, D., AND REYNOLDS, JR., P. Optimal Dynamic Remapping of Parallel Com-
putations. Tech. Rep. 87-49, ICASE, July 1987.

[9] NICOL, D., AND SALTZ, J. Dynamic Remapping of Parallel Computations with Vary-
ing Resource Demands. Tech. Rep. 86-45, ICASE, July 1986. To appear in IEEE
Transactions o n Computers.

a*-
[lo] NICOL, D., A N D SALTZ, J . Schedules for Mapping Irregular Parallel Computations .

Tech. Rep. 87-52, ICASE, September 1987.

[ll] NICOL, D., AND SALTZ, J. Principles for Problem Aggregation and Assignment in
I Medium Scale Multiprocessors. Tech. Rep. 87-39, ICASE, July 1987.

[12] NICOL, D. M. The Performance of Synchronizing Networks. Master’s thesis, De-
partment of Computer Science, University of Virginia, January 1984.

I

[13] PEACOCK, J . IC., MANNING, E., AND WONG, 3. W. Synchronization of distributed
simulation using broadcast algorithms. Computer Networks 4 (1980), 3-10.

[14] RATTNER, J. Concurrent processing: a new direction in scientific computing. In
AFIPS Conference Proceedings, National Computer Conference (1985), pp. 157-166.

14

[15] R.I:YNOI,I)S, JR., P. A shil.r(:<l rcsoiirw algoritliin for clistributctl sinidation. In Pro-
ceedings of the Ninth Annual International Computer Computer Architecture Confer-
ence (Austin, Texas, April 1982), pp. 259 -266.

[16] SALTZ, J . , NAIK, V. I<., AND NICOL, D. Rcduction of the effects of the communi-
cation delays in scientific a.lgorithms on message passing mimd architectures. SIAM
J. Sci . Stat. Comput 8, 1 (1987), s118-s134.

[17] SALTZ, J . , AND NICOL, D. Statistical methodologies for the control of dynamic
remapping. In Proceedings of the ARO Conference on Medium Scale Multiprocessing
(Stanford University, 1986).

[18] WON, Y . , AND SAIfNI, S . Maze routing on a hypercube multiprocessor computer. In
Proceedings of the 1967 International Conference on Parallel Processing (St. Charles,
Illinois, August 1987), pp. 630-637.

15

m Nalwii M\cinaulcs arC
Report Documentation Page

Su ?e Aamrnslralw

1. Report No.

NASA CR- 178396
ICASE Report No. 87-51

2. Government Accession No.

7. Author(s1

David M. Nicol

17. Key Words (Suggested by Authork))

9. Performing Organization Name and Address

Institute for Computer Applications in Science

Mail S t o p 132C, NASA Lanp;ley Research Center
and Engineering

Hampton, VA 23665-5 2 25 -. _.__ --
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

15. Supplementary Notes

18. Distribution Statement

3. Recipient’s Catalog No.

19. Security Classif. (of this report)

Unclassified

5. Report Date

October 1987

6. Performing Organization Code

20. Security Classif. (of this page)

Uncl as s i f ied

8. Performing Organization Report No.

87-51

10. Work Unit No.

505-90-2 1-01

11. Contract or Grant No.

NAS1-18107

13. Type of Repoxand Period Covered-

Contractor Report

14. Sponsoring Agency Code

Langley Technical Monitor:
Richard W. Barnwell

Submitted to Proc. of SCS
Conference on Distributed
Simulation

Final Report

16. Abstract

Perhaps the most critical problem in distributed simulation is that of
mapping: without an effective mapping of workload to processors the speedup
potential of parallel processing cannot be realized. Mapping a simulation onto a
message-passing architecture is especially difficult when the computational
workload dynamically changes as a function of time and space; this is exactly the
situation faced by battlefield simulations. This paper studies an approach where
the simulated battlefield domain is first partitioned into many regions of equal
size, typically there are more regions than processors. The regions are then
ass€gned to processors; a processor is responsible for performing all simulation
activity associated with its regions. The assignment algorithm is quite simple
and attempts to balance load by exploiting locality of workload intensity. The
performance of this technique is studied on a simple battlefield simulation
implemented on the Flex/32 multiprocessor. Our measurements show that the
proposed method achieves reasonable processor efficiencies. Furthermore, the
method shows promise €or use in dynamic remapping of the simulation.

simulation, parallel processing,
multiprocessors, message-passing

61 - Computer Programming and
Software

Unclassified - unlimited
21. No. of pages 22. Price T-l-T-

I I

NASA FORM 1626 OCT 86

